Steganalysis Using High-Dimensional Features Derived from Co-occurrence Matrix and Class-Wise Non-Principal Components Analysis (CNPCA)
نویسندگان
چکیده
This paper presents a novel steganalysis scheme with highdimensional feature vectors derived from co-occurrence matrix in either spatial domain or JPEG coefficient domain, which is sensitive to data embedding process. The class-wise non-principal components analysis (CNPCA) is proposed to solve the problem of the classification in the high-dimensional feature vector space. The experimental results have demonstrated that the proposed scheme outperforms the existing steganalysis techniques in attacking the commonly used steganographic schemes applied to spatial domain (SpreadSpectrum, LSB, QIM) or JPEG domain (OutGuess, F5, Model-Based).
منابع مشابه
Steganalysis of LSB Embedded Images Using Gray Level Co- Occurrence Matrix
This paper proposes a steganalysis technique for both grayscale and color images. It uses the feature vectors derived from gray level co-occurrence matrix (GLCM) in spatial domain, which is sensitive to data embedding process. This GLCM matrix is derived from an image. Several combinations of diagonal elements of GLCM are considered as features. There is difference between the features of stego...
متن کاملپنهانشکنی تصویر براساس ویژگیهای ماتریس هموقوعی
In this paper two novel steganalysis methods is presented based on co-occurrence matrix of an image. It is shown that by using features extracted from this matrix, we can differentiate between cover and stego images. These features include energy, entropy, contrast, inverse difference moment, maximum probability and correlation. We use SVM classification for separation of cover and stego imag...
متن کاملSteganalysis of LSB Matching Based on the Sum Features of Average Co-occurrence Matrix Using Image Estimation
A new LSB matching steganalysis scheme for gray images is proposed in this paper. This method excavates the relevance between pixels in the LSB matching stego image from the co-occurrence matrix. This method can acquire high accuracy near to 100% at high embedding rate. In order to increase the accuracy at low embedding rate, we strengthen the differences between the cover image and the stego i...
متن کاملDetection of perturbed quantization (PQ) steganography based on empirical matrix
Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...
متن کاملImage Steganalysis Based on Co-Occurrences of Integer Wavelet Coefficients
We present a steganalysis scheme for LSB matching steganography based on feature vectors extracted from integer wavelet transform (IWT). In integer wavelet decomposition of an image, the coefficients will be integer, so we can calculate co-occurrence matrix of them without rounding the coefficients. Before calculation of co-occurrence matrices, we clip some of the most significant bitplanes of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006